

TRIZ Theory of Inventive Problem Solving Improve your problem solving skills

Lifelong Learning Programme

Editor:

Gaetano Cascini (University of Florence)

Authors:

Gaetano Cascini (University of Florence), Francesco Saverio Frillici (University of Florence), Jürgen Jantschgi (Fachhochschule Kärnten) Igor Kaikov (EIFER), Nikolai Khomenko

Translation and adaptation

Name Surname (Institution)

Layout

Fabio Tomasi (AREA Science Park)

Cover image and icons

Harry Flosser (Harry Flosser Studios)

Edition

EN 1.0 - November 2009 Check the TETRIS project web site <u>www.tetris-project.org</u> for updated versions.

Copyright notes

This book has been developed in the frame of the TETRIS project funded by the European Commission—Leonardo da Vinci Programme.

The partners of the project consortium are:

AREA Science Park (Italy) <u>www.area.trieste.it</u> (project coordinator)

ACC Austria Gmbh (Austria) www.the-acc-group.com

European Institute for Energy Research - EIFER (Germany) www.eifer.uni-karlsruhe.de

Fachhochschule Kärnten (Austria) www.fh-kaernten.at

Harry Flosser Studios (Germany) www.harryflosser.com

Higher Technical College Wolfsberg (Austria) www.htl-wolfsberg.at

Jelgava 1. Gymnasium (Latvia) www.1gim.jelgava.lv

Siemens AG, Sector Industry, Industrial Automation and Drive Technology (Germany) <u>w1.siemens.com/entry/cc/en/</u>

STENUM Environmental Consultancy and Research Company Ltd (Austria) <u>www.stenum.at</u> Technical Institute for Industry "Arturo Malignani" (Italy) <u>www.malignani.ud.it</u>

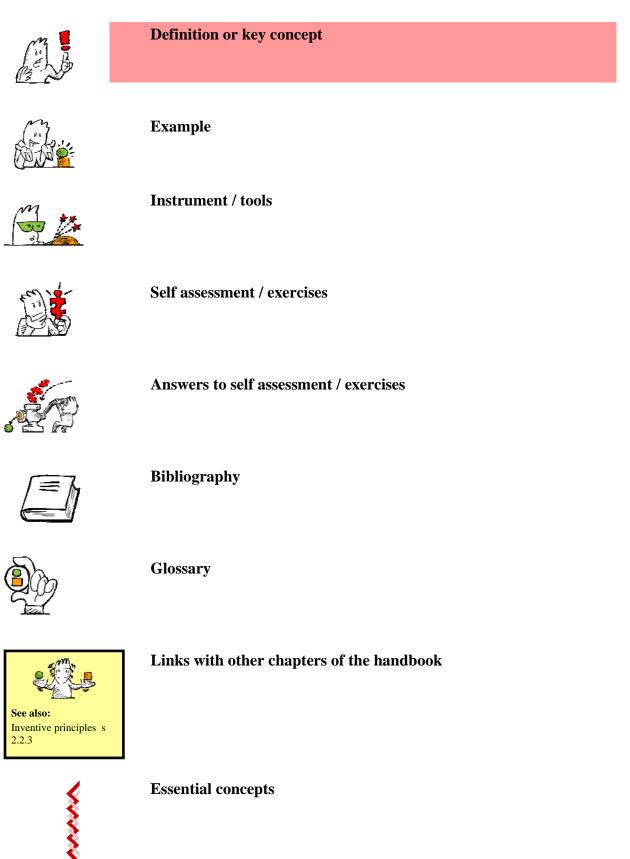
The educational center for adults of Jelgava (Latvia) www.jrpic.lv

University of Florence (Italy) www.dmti.unifi.it

This book can be freely copied and distributed, under the condition to always include the present copyright notes also in case of partial use of the handbook. Teachers, trainers and any other user or distributor should always quote the authors, the TETRIS project and the Lifelong Learning Programme.

The book can be also freely translated into other languages. Translators should include the present copyright notes and send the translated text to project coordinator that will publish it on the TETRIS project web site to be freely distributed.

Disclaimer


This project has been funded with support from the European Commission.

This publication reflects the views only of the author and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Key to symbols

The following symbols will help you in quickly find out the relevant information you are looking for in the handbook:

Index

1 Fundamentals of Classical TRIZ	1
1.0 Why do we need to know the foundations of applied theories?	1
1. 0.1 The notion of creation is akin to the notion of Horizon	2
1.1 Introduction for teachers and companies	5
1.2 Introduction to TRIZ for students	11
1.3 TETRIS OTSM ¹ —TRIZ Glossary-solution	15
1.3.1 Problem.	15
1.3.1.1 Typical Problem.	15
1.3.1.2 Non Typical Problem (see: Innovative (Problem) Situation	
1.3.1.3 Innovative (Problem, Inventive) Situation.	15
1.3.2 Solution	15
1.3.2.1 Typical Solution.	15
1.3.2.2 Non Typical Solution.	16
1.3.2.3 Line of Solutions.	16
1.3.3 Models for representation of Elements of Innovative (Problem)	20
1.3.3.1 ENV Model	20 23
1.3.3.2 Element (component)	23
1.3.3.3 Parameter (variable, synonyms: property, feature, characteristic, etc.)	23
1.3.3.4 Value	23 24
1.3.3.5 System Operator (multi screen schema of powerful thinking)	24
1.3.3.6 OTSM-TRIZ Models of Problem solving process.	25
1.3.3.7 "Funnel" Model of a TRIZ based problem solving process.	26
1.3.3.8 "Tongs" Model of modern OTSM-TRIZ	27
1.3.3.9 "Hill "model of Classical TRIZ	27
1.3.3.10 "Contradiction" model	29
2 Laws of Engineering System Evolution	33
2.0 Introduction	33
2.0.1 The role of the Laws in TRIZ	34
2.0.1.1 Laws in science	34
2.0.1.2 Laws in TRIZ	34
2.0.1.3 The Characteristics of laws of development of the	
technical system at its different stages of	
development systems	35
2.0.1.4 The definition of laws of development of	
technical systems in the given textbook	36
2.1: The law of the completeness of parts of the system	36
2.1.1. Definition	37
2.1.2 Theory	38
2.1.3 Model	38
2.1.4. Tools (how to use them)	39
2.1.4.1. How to determine the function of the	•
technical system correctly	39

2.1.4.2. How to determine the parts of the technical	
system correctly	40
2.1.4.3. How to estimate the working capacity of parts of the	
technical system	43
2.1.4.4. How to estimate the operation of parts of the	
technical system	43
2.1.5. Example (Problem-Solution)	43
2.1.6 Self assessment	45
2.1.7 References	45
2.2 The law of 'energy conductivity' of a system	46
2.2.1 Definition	46
2.2.2. Theory	46
2.2.2.1. Through pass of energy as an estimated	
parameter of the technical system	46
2.2.2.2. The typical mistakes	47
2.2.2.3. Example 2. 1. Red thread. (Explanation	
of the theory)	47
2.2.3. Model	48
2.2.3.1. The four- element scheme	48
2.2.3.2. Example 2.2 (Sokolov's loudspeaker) –	
a thorough pass of energy	48
2.2.3.3. Power conductivity of the four elements model	50
2.2.3.4. Example	51
2.2.4. Instruments (how to use)	53
2.2.5. Example (Problem-Solution)	54
2.2.6. Self Assessment - (Questions, tasks)	55
2.2.7 References	57
2.3: The law of harmony of the rhythms of parts of the system	59
2.3.1. Definition	59
2.3.2. Theory (Details)	59
2.3.3. Model	60
2.3.4. Instruments - Tools (how to use) 2.3.4.1. Example 3.1. Paralympic Games	61
2.3.5. Example (Problem-Solution)	63
2.3.6 Self Assessment - (Questions, tasks)	66
2.3.7 References	66
2.4 The law of increasing of the degree of Ideality of the system	67
2.4.1. Definition	67
2.4.2. Theory (Details) to the Law of Increase of Ideality	67
2.4.3. Model	69
2.4.4. Instruments - Tools (how to use)	70
2.4.5. Examples	71
2.4.6 Self Assessment - (Questions, tasks)	74
2.4.7 References	74
2.5 Law of uneven development of a system's parts	75
2.5.1. Definition	76
2.5.2. Theory (Details)	76
2.5.3. Model	77
2.5.4. Instruments - Tools (how to use)	79

Programma di apprendimento permanente

2.5.4.1. Development laws and their tools	79
2.5.4.2. S-shaped curve	79
2.5.4.3. Building of a network of problems	
and analysis of its structure	79
2.5.5. Example	79
2.5.6 Self assessment	80
2.5.7 References	81
2.6 The law of transition to a super-system	82
2.6.1. Definition	82
2.6.2. Theory (Details)	82
2.6.3. Model	82
2.6.4. Instruments - Tools (how to use)	83
2.6.5. Example Loud speakers	84
2.6.7. Self Assessment - (Questions, tasks)	86
2.6.8. References	87
2.7 The law of the transition from the macro to the micro level	88
2.7.1. Definition	88
2.7.2. Theory (Details)	89
2.7.3. Model	89
2.7.4. Instruments - Tools (how to use)	90
2.7.5. Examples	91
2.7.6. Self Assessment - (Questions, tasks)	92
2.7.7. References	92
2.8 The law of increasing the S-field involvement	93
2.8.1. Definition	94
2.8.2. Theory (Details)	94
2.8.3. Model	94
2.8.4. Instruments - Tools (how to use)	95
2.8.5. Example	95
2.8.6. Self Assessment - (Questions, tasks)	98
2.8.7. References	99
3 Short Review of Altshuller's Algorithm of Inventive Problem Solving (ARIZ)	
Illustrated by the Analysis of a Real Problem	101
3.0 ARIZ creation and development	101
3.0.1 Solving a problem: a short review of the main stages of	
ARIZ-based work	103
3.1 The first stage. Constructing a problem model	
and using standard inventive solutions	105
3.1.1 Inventive solutions	105
3.1.2 The second stage. Analyzing the available resources	106
3.1.3 The third stage. Constructing an idea of a satisfactory	
solution by analyzing IFRs and Physical Contradictions	
related to specific resources	106
3.1.4 The fourth stage. Mobilizing the resources	106
3.1.5 The Fifth Stage. Using the knowledge collection	
accumulated in TRIZ	107

3.1.6 The sixth stage. Changing and/or correcting	
the initial problem description	107
3.1.7 The Seventh Stage. Evaluating the obtained solutions	107
3.1.8 The Eighth Stage. Expanding the application scope and	
standardizing a creative solution	107
3.1.9 The ninth Stage. Reflection about the performed work	107
3.2 The list of ARIZ steps	108
3.2.1 Part 1: Analyzing a problem and creating a model.	110
3.2.2 Part 2: Analyzing a problem model	122
3.2.3 Part 3: Determining the ideal final result (IFR) and	
physical contradictions which prevent obtaining IFR.	129
4 Su-field analysis and standard solutions	139
4.1 - Su-field analysis and standard solutions: basic notions and rules	139
4.1.1 – Elements of a minimal technical system	142
4.1.1.1 – Types of fields and related symbols	143
4.1.1.2 - Types of interactions and related symbols	146
4.1.2 – Model of a minimal technical system	151
4.1.2.1 – Graphical representation of a su-field model	152
4.2 - Standard solutions	155
4.2.1 - Structure of a standard solution	157
4.2.1.1 - Transformation of a su-field system	160
4.2.2 - Classification of standard solutions	164
Class 1: improving interactions and eliminating harmful effects	166
Class 1.1: Synthesis and improvement of a Su-field	166
Standard 1-1-1: synthesis of substance-field system	167
Standard 1-1-2: improving interactions by introducing additives into the objects	170
Standard 1-1-3: improving interactions by introducing additives into a system	173
Standard 1-1-4: use of environment to improve interactions	176
Standard 1-1-5: modification of environment to improve interactions	179
Standard 1-1-6: providing minimum effect of action	182
Standard 1-1-7: providing maximum effect of action	185
Standard 1-1-8: providing selective effect	187
Standard 1-1-8-1: providing selective effect by maximum field	100
and protective substance	188
Standard 1-1-8-2: providing selective effect by minimal field	100
and active substance Class 1.2: elimination of a harmful interaction	189
	194 195
Standard 1.2.1 – elimination of a harmful interaction by a foreign substance	193
Standard 1.2.2 – elimination of a harmful interaction by modification of an existing substance	197
Standard 1.2.3 – elimination of a harmful effect of a field	200
Standard 1.2.3 – elimination of a harmful effect by a new field	200
Standard 2.1.1 – synthesis of a chain substance-field system	202
Standard 2.1.2 – synthesis of a dual substance-field system	203
Standard 2.2.2 — synthesis of a dual substance-field system Standard 2.2.2 — increasing a degree of fragmentation of substance components	208
Standard 2.2.2 - Increasing a degree of magnetitation of substance components Standard 2.2.3 – transition to capillary porous objects	213
Standard 2.2.4 – increasing a degree of system dynamics	215
Standard 3.1.1 - formation of bi and poly-systems	213
	_10

Programma di apprendimento permanente

Standard 3.1.2 - Developing links in bi and poly-systems Standard 3.1.3 - increasing the difference between system components Standard 3.1.4 - integration of several components into a single component Standard 3.1.5 – distributing incompatible properties among the system	220 221 222
and its parts	224
Standard 3.2.1 – transition to microlevel	226
Standard 5.1.1.1 - introducing substances to a system under restricted conditions	227
Techniques to Resolve Contradictions / Resources / Effects	229
5.1 - Definition Contradictions	229
5.1.1 – Types of Contradictions	229
5.1.1.1 – Administrative Contradiction	230
5.1.1.2 – Technical Contradiction	231
5.1.1.3 – Physical Contradiction	231
5.1.1.4 – TRIZ & Technical & Physical Contradictions	232
5.1.2 - The OTSM model of a contradiction:	233
5.2 - Techniques to resolve Technical Contradictions	236
5.2.1 – The 40 Inventive Principles	236
5.2.2. – The Altshuller Matrix / Contradiction Matrix	241
5.2.2.1. – The Design of the Altshuller Matrix	241
5.2.2.2. – The 39 Technical Parameters	242
5.2.2.3. – Usage of the Altshuller Matrix	243
5.3. Techniques to resolve Physical Contradictions	249
5.3.1. – The 4 Separation Principles	249
5.3.1.1 – Separation in Time	251
5.3.1.2 – Separation in Space	253
5.3.1.3 – Separation on Conditions // in Relation	255
5.3.1.4 – Separation in System Level // by Transition	
to Sub- or Supersystem	256
5.3.2. – Satisfaction (Effects) & Bypass (Redesign)	257
5.4. – Effects	258
5.5. – Substance and-Field- Resources	261
5.6 Annexes	263
5.6.1 The 40 Inventive Principles	263
5.6.2. – The 39 Technical Parameters	267
5.6.3. – The Altshuller Matrix	270
5.6.4 Effects	272
5.6.5 Substance-and-Field Resources	277
5.6.6 Glossary: Contradictions / Effects / Resources	278
5.6.7 References - Contradictions / Effects / Resources	279

